Heat transfer from nanoparticles: a corresponding state analysis.

نویسندگان

  • Samy Merabia
  • Sergei Shenogin
  • Laurent Joly
  • Pawel Keblinski
  • Jean-Louis Barrat
چکیده

In this contribution, we study situations in which nanoparticles in a fluid are strongly heated, generating high heat fluxes. This situation is relevant to experiments in which a fluid is locally heated by using selective absorption of radiation by solid particles. We first study this situation for different types of molecular interactions, using models for gold particles suspended in octane and in water. As already reported in experiments, very high heat fluxes and temperature elevations (leading eventually to particle destruction) can be observed in such situations. We show that a very simple modeling based on Lennard-Jones (LJ) interactions captures the essential features of such experiments and that the results for various liquids can be mapped onto the LJ case, provided a physically justified (corresponding state) choice of parameters is made. Physically, the possibility of sustaining very high heat fluxes is related to the strong curvature of the interface that inhibits the formation of an insulating vapor film.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical study on convective heat transfer for water-based alumina nanofluids

The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...

متن کامل

Numerical study on convective heat transfer for water-based alumina nanofluids

The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...

متن کامل

Investigation of Laminar Pulsating Nanofluid Flow and Heat Transfer in a Rectangular Channel

In this study, two-dimensional pulsating unsteady flow of nanofluid through a rectangular channel with isothermal walls is investigated numerically. The set of resultant algebraic equations is solved simultaneously using SIMPLE algorithm to obtain the velocity and pressure distribution within the channel. The effects of several parameters, such as volume fraction of different nanoparticles, Rey...

متن کامل

A model for enhanced heat transfer in an enclosure using Nano-aerosols

In this study, the behavior of nanoparticles using a numerical model is discussed. For this study a model for the expansion in free convection heat transfer and mix in a rectangular container with dimensions of 1 × 4 cm using Nano-aerosols in the air is going when copper nanoparticles, use and by changing the temperature difference between hot and cold wall, we will examine its impact on the ra...

متن کامل

Flow and Heat Transfer Analysis of the Sodium Alginate Conveying Copper Nanoparticles between Two Parallel Plates

In this study, the steady incompressible flow of a non-Newtonian sodium alginate (SA) fluid conveying copper nanoparticles (Cu) which flow within two vertical parallel plates is investigated by using the homotopy perturbation analytical scheme to solve the coupled nonlinear ordinary equations arising from the mechanics of the fluid. The developed analytical solutions are used to investigate the...

متن کامل

Thermodynamic analysis of a magnetohydrodyamic oldroyd 8-constant fluid in a vertical channel with heat source and slippage

Thermodynamic analysis of a steady state flow and heat transfer of an Oldroyd 8-constant fluid with effect of heat source, velocity slip and buoyancy force under tranverse a magnetic field is is carried out in this paper. The model for momentum and energy balance is tackled numerically using Method of Weighted Residual (MWR). Partition method is used to minimize the associated residuals. The re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 36  شماره 

صفحات  -

تاریخ انتشار 2009